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Remembering Wim Els

‘I can't imagine ASSA without Wim. I've worked with him closely since my days as ASABA
President, as a Council member, as Principal of the Academy and now as President. The
last year was parficularly difficult but he helped to guide us with his wisdom and humour. He
wds d genuine transformation champion, and the South African actuarial community will
miss him very much.”

Lusani Mulaudzi - President: ASSA

“The loss of Wim has been a devastating blow for the ASSA staff including myself. We were
planning a surprise function to celebrate his 2o5th anniversary at ASSA next week Tuesday.
Wim has been a font of wisdom and experience in the office, combining humour with a
steely determination o serve the Society, to accelerate transformation and to ensure we
serve the public intferest. To me, Wim has been not only a hardworking and dedicated
colleague but also a mentor and friend. We send our condolences to his wife, Dalene, and

his daughfters.”
Mike McDougall - Chief Executive: ASSA
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Goals of the talk

 What machine learning implies for actuarial science
 Understand the problems solved by deep learning

 Discuss the tools of the trade

 Discuss recent successes of deep learning in actuarial science

 Discuss emerging challenges and solutions



Deep Learning Iin the Wild

e Malignancy probability
e LUMAS risk bucket
e Cancer localization

' ' NVIDIA DRIVE AV

" Selt-driving Software Stack
- P

An exciting part of the world of finance is insurance

| think we all know that the insurance industry is exciting. | see it everywhere - the airlines, the cars, most all the
businesses in the world. The insurance industry can really drive the economic innovation.

But one area of insurance that | really want to see develop more is financial advice. It might be a private sector
service but insurance companies are not really there anymore. In general we are not allowed to talk to clients
about financial solutions - we need to find a new solution. It would be fun to see what a private sector insurance
can deliver.

Man from www.thispersondoesnotexist.com/
Mona Lisa from Samsung Al team

Text from https://talktotransformer.com/
Self- driving from NVIDIA blog

Cancer detection from Nature Medicine



http://www.thispersondoesnotexist.com/
https://talktotransformer.com/

Actuarial Data Science

 Traditionally, actuaries responsible for statistical and financial management of
Insurers

Today, actuaries, data scientists, machine learning engineers and others work
alongside each other

Big Data, Analytics & Unstructured Data
Enterprise Risk Management

Asset Liability Management \ b ;~'

 Actuaries focused on specialized areas such as pricing/reserving
Many applications of ML/DL within insurance but outside of traditional areas

Non-Life Actuary

 Actuarial science merges statistics, finance, demography and risk management
Currently evolving to include ML/DL

1
Life Actuary ,,,l A
il

 According to Data Science working group of the SAA:
Actuary of the fifth kind - job description is expanded further to include statistical
and computer-science
Actuarial data science - subset of mathematics/statistics, computer science and
actuarial knowledge

 Focus of talk: ML/DL within Actuarial Data Science — applications of machine learning
and deep learning to traditional problems dealt with by actuaries

Definitions and Diagram from Data Science working group of the Swiss Association of Actuaries (SAA)
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Machine Learning

 Machine Learning “the study of algorithms
that allow computer programs to

automatically improve through experience” . .
(Mitchell 1997) Machine Learning

« Machine learning is an approach to the field

of Artificial Intelligence
Systems trained to recognize patterns

Supervised Learning Unsupervised Learing Reinforcement Learning

within data to acquire knowledge

(Goodfellow, Bengio and Courville 2016).
Classification

« Earlier attempts to build Al systems = hard

code knowledge into knowledge bases ... but
doesn’t work for highly complex tasks e.g.

Image recognition, scene understanding and ‘

Inferring semantic concepts (Bengio 2009)

Deep Learning

« ML Paradigm — feed data to the machine and
let it figure out what is important from the
data!

Deep Learning represents a specific
approach to ML.



Supervised Learning

 Supervised learning = application of machine learning to datasets that contain features and outputs with the goal
of predicting the outputs from the features (Friedman, Hastie and Tibshirani 2009).

 Feature engineering - Suppose we realize that Claims depends on Age”2 => enlarge feature space by adding
Age”2 to data. Other options — add interactions/basis functions e.g. splines
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Goal: Explaining or Predicting?

Which of the following are an ML technique?
Linear regression and friends (GLM/GLMM)

Generalized Additive model (GAM)
Exponential Smoothing
Chain-Ladder and Bornhuetter-Ferguson

* |t depends on the goal:
Are we building a causal understanding of the world (inferences from unbiased coefficients)?

Or do we want to make predictions (bias-variance trade-off)?

* Distinction between tasks of predicting and explaining, see Shmueli (2010). Focus on predictive performance
leads to:

Building algorithms to predict responses instead of specifying a stochastic data generating model (Breiman
2001)...

... favouring models with good predictive performance at expense of interpretability.

Accepting bias in model coefficients If this is expected to reduce the overall prediction error.

Quantifying predictive error (i.e. out-of-sample error)

ML relies on a different approach to building, parameterizing and testing statistical models, based on statistical 10
learning theory, and focuses on predictive accuracy.



Actuaries solve “umbrella problems”

« Actuarial work involves making predictions, which are either used directly (General Insurance) or indirectly

(Life)

 Consider two different problems —taking an umbrella compared to investing in a rain-dance during a drought

Umbrella problem

Rain-dance problem

Problem Should | take an umbrella? Should I iInvest In a rain-dance?

Task Prediction - Will 1t rain? Causal Iinference - WIll the rain-
dance cause It to rain?

Tool Machine Learning Unbiased regression — or post-

selection Inference

« Actuaries most often focus on “umbrella problems” (Kleinberg, Ludwig, Mullainathan et al. 2015)

 Decisions of actuaries based on models generally do not need to be based on causal understanding (unless
required by aregulator or practising standards) but interpretability helps the acceptance of models

 Can lead to new theoretical insights — see Golden, Brockett, Al et al. (2016) on credit scores

11




Recipe for Actuarial Data Science

* Actuarial problems are often supervised regressions =>
« |f an actuarial problem can be expressed as a regression, then machine and deep learning can be applied.

 Obvious areas of application:

P&C pricing

BNR reserving
-xperience analysis
Mortality modelling
_ite valuation models

 But don’t forget about unsupervised learning either!

12
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Actuarial Modelling

« Actuarial modelling tasks vary between:
— Human input
Empirically/data driven

NL pricing

Approximation of nested Monte Carlo

Portfolio specific mortality

— Feature engineering

Model Driven
IBNR reserving (Chain-Ladder)
Life experience analysis (AVE) —  Model Specification
Capital modelling (Log-normal/Clayton copula)
Mortality forecasting (Lee-Carter)

_

 Feature engineering = data driven approach to enlarging a feature space using human ingenuity and expert
domain knowledge

Apply various techniques to the raw input data - PCA/splines
Fnlarge features with other related data (economic/demographic)

 Model specification = model driven approach where define structure and form of model (often statistical) and
then find the data that can be used to fit it 14



Issues with Traditional Approach

In many domains, including actuarial science, traditional approach to designing machine learning systems
relies on human input for feature engineering or model specification.

 Three arguments against traditional approach:

Complexity — which are the relevant features to extract/what is the correct model specification? Difficult
with very high dimensional, unstructured data such as images or text. (Bengio 2009; Goodfellow, Bengio

and Courville 2016)

Expert knowledge - requires suitable prior knowledge, which can take decades to build (and might not be
transferable to a new domain) (LeCun, Bengio and Hinton 2015)

Effort — designing features is time consuming/tedious => limits scope and applicability (Bengio, Courville
and Vincent 2013; Goodfellow, Bengio and Courville 2016)

Within actuarial modelling, complexity is not only due to unstructured data. Many difficult problems of model
specification arise when performing actuarial tasks at a large scale:

Multi-LoB IBNR reserving
Mortality forecasting for multiple populations
15



Complexity: Multi-population Mortality Modelling
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Representation Learning

 Representation Learning = ML technique where algorithms automatically design features that are optimal (in some
sense) for a particular task

 Traditional examples are PCA (unsupervised) and PLS (supervised):

PCA produces features that summarize directions of greatest variance in feature matrix

PLS produces features that maximize covariance with response variable (Stone and Brooks 1990)

 Feature space then comprised of learned features which can be fed into ML/DL model

« BUT:. Simple/naive RL approaches often fail when applied to high dimensional data

17



Example: Fashion-MNIST (1)

* |Inspired by Hinton and Salakhutdinov (2006) PCA Decomposition
» Fashion-MNIST —-70 000 images from Zolando of class name  neboot © Coat ® Pullover ©Shi T-shirt/top
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Deep Learning

 Deep Learning =representation learning technique that automatically constructs hierarchies of complex features
to represent abstract concepts

Features in lower layers composed of simpler features constructed at higher layers => complex concepts can
be represented automatically

« Typical example of deep learning is feed-forward neural networks, which are multi-layered machine learning
models, where each layer learns a new representation of the features.

« The principle: Provide raw data to the network and let it figure out what and how to learn.

 Desiderata for Al by Bengio (2009): “Ability to learn with little human input the low-level, intermediate, and high-
level abstractions that would be useful to represent the kind of complex functions needed for Al tasks.”

19



Example: Fashion-MNIST (2)

 Applied a deep autoencoder to the same data
(trained In unsupervised manner)

Type of non-linear PCA

e Differences between some classes much more
clearly emphasized

 Deep representation of data automatically
captures meaningful differences between the
Images without (much) human input

 Automated feature/model specification

 Aside —feature captured in unsupervised
learning might be useful for supervised
learning too.

 Goodfellow, Bengio and Courville (2016) :
“basic idea is features useful for the
unsupervised task also be useful for the
supervised learning task”
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MNIST — Density Plot

Density in learned space

Fashion-

— T-shirt/top

— Pullover — Shirt

— Ankle boot =~ Coat

class name

— Dress — Sandal — Sneaker  Trouser

— Bag

pca

autoencoder

0.5 1
0.0
-0.5 -

¢

-1.0 -
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Deep Learning for Actuarial Modelling

 Actuarial tasks vary between Empirically/data driven and Model Driven
 Both approaches traditionally rely on manual specification of features or models

 Deep learning offers an empirical solution to both types of modelling task — feed data into a suitably deep
neural network => learn an optimal representation of input data for task

 Exchange of model specification for a new task => architecture specification
 Opportunity —improve best estimate modelling

 Deep learning comes at a (potential) cost —relying on a learned representation means less understanding of
models, to some extent

22
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Single Layer NN = Linear Regression

 Single layer neural network
Circles = variables
Lines = connections between inputs and outputs

* |nput layer holds the variables that are input to the
network...

* ... multiplied by weights (coefficients) to get to result

 Single layer neural network is a GLM!

0000000C

Input Layer = R®

24



Deep Feedforward Net

 Deep = multiple layers
 Feedforward = data travels from left to right

* Fully connected network (FCN) = all neurons in layer
connected to all neurons in previous layer

« More complicated representations of input data
learned In hidden layers - subsequent layers
represent regressions on the variables in hidden
layers

Y 5 r
S LR i
r'd i r'd
R RS F
ar Lt ._:."'.-
r'd

Input Laver € R'® Hidden Layer € R* Hidden Layer € E* Output Laver € R'

25



FCN generalizes GLM

Linear model

Feature extractor

ﬁ
O%

.....“..“".

..
.:.,

-E-":}-':dr"--
e _.-':_?'-r_

=
-_-'
Lo i —
e

.w\.... ._..ﬂ._m.... ... fFi
A AR A
[ .....H..._ | .....“.. i

Intermediate layers = representation learning,

guided by supervised objective.

where

Input variables = new representation of data

Last layer = (generalized) linear model

No need to use GLM — strip off last layer and use
learned features in, for example, XGBoost

Or mix with traditional method of fitting GLM

-

Laver € R'

Ohutput

Hidden Laver € E*® Hidden Laver € E*®

-

Laver & R'S

Input
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Example — Lee-Carter Neural Net

 Multi-population mortality forecasting
model (Richman and Wuthrich 2018)

 Supervised regression on HMD data
(iInputs = Year, Country, Age; outputs =
mx)

 5layer deep FCN

* Generalizes the LC model

Input Layer

Feature Layer

Intermediate Layer 1

Intermediate Layer 2

Intermediate Layer 5

Ouiput Layer

27



Features In last layer of network

 Representation = output of last layer (128
dimensions) with dimension reduced using
PCA

« Can be interpreted as relativities of mortality
rates estimated for each period

* Qutput shifted and scaled to produce final
results

 Generalization of Brass Logit Transform
where base table specified using NN (Brass
1964)

Country * GBRTENW ® [TA * USA

2000

2010

-V1

0 25 50 75 100 0
Age
Y. =a+b=x*z, ,where:

v, = logit of mortality at age X
a,b = regression coefficients

z, = logit of reference mortality

25

50

5

100
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Specialized Architectures

Most modern examples of DL achieving state of the art results on tasks rely on using specialized architectures
l.e. not simple fully connected networks

Key principle - Use architecture that expresses useful priors (inductive bias) about the data => Achievement of
major performance gains

Embedding layers - categorical data (or real values structured as categorical data)

Autoencoder — unsupervised learning
Convolutional neural network - data with spatial/temporal dimension e.g. images and time series
Recurrent neural network — data with temporal structure

Skip connections — makes training neural networks easier

Section ends with example of fine tuning a specialized architecture for a new task

29



(Some) Actuarial Applications of DL

. . . Mortality Quantitative Risk
Pricing Reserving Telematics .
Forecasting Management
Ferrario, Noll and Castellani, Fiore, Marino et |« Gao and Withrich (2017) « Castellani, Fiore, Marino
Withrich (2018) al. (2018) « Gao, Meng and Waithrich et al. (2018)
Noll, Salzmann and Doyle and Groendyke (2018) * Hejazi and Jackson
Withrich (2018) (2018) « Gao, Withrich and Yang (2016, 2017)
Withrich and Buser Gabrielli and Wathrich (2018)
Feed-forward Nets | (2018) (2018)

Hejazi and Jackson (2016,
2017)

Wathrich (2018)
Zarkadoulas (2017)

Convolutional

« Gao and Wiuthrich (2019)

Neural Nets
Recurrent Neural Kuo (2018a, 2018b) Nigri, Levantesi,
Marino et al. (2019
Nets (2019)
Richman (2018) Gabrielli, Richman and Richman and
: Schelldorfer and Wathrich (2018) Wathrich (2018)
Embeddmg Wathrich (2019) Gabrielli (2019)
Layers Wathrich and Merz
(2019)
* Richman (2018) Hainaut (2018)
Autoencoders Richman (2018)
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Embedding Layer — Categorical Data

 One hot encoding expresses
the prior that categories are
orthogonal => similar
observations not categorized
INto groups

 Traditional actuarial solution
— credibility

« Embedding layer prior —
related categories should
cluster together:

Learns dense vector
transtormation of sparse
INnput vectors and clusters
similar categories together
Can pre-calibrate to MLE
of GLM models, leading to
CANN proposal of
WUthrich and Merz (2019)

Actuary
Accountant
Quant
Statistician
Economist
Underwriter

Actuary

O O O O O -

Actuary
Accountant
Quant
Statistician
Economist
Underwriter

Accountant

O O O O — O

Finance
0.5
0.5
0.75
0
0.5
0

Quant

o O O — O O

Math
0.25
0
0.25
0.5
0.25
0.1

Statistician Economist Underwriter

0

o O — O O

Stastistics
0.5
0
0.25
0.85
0.5
0.05

0

OO — O O O

Liabilities
0.5
0
0
0
0
0.75

. O O O O O
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| earned embeddings

* Age embeddings extracted from LC NN model variable - dimt - dim2
 Five dimensions reduced using PCA
 Age relativities of mortality rates

* |In deeper layers of network, combined with
other inputs to produce representations specific
to:

Country

Gender

o
° e B &
. {=

1me A

] i

] -"

i . l._."

B &

ol

value*
F

 First dimension of PCA is shape of lifetable

« Second dimension is shape of child, young and e
older adult mortality relative to middle age and
oldest age mortality

o 25 S0 75 100
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Autoencoder — Unsupervised Learning

 Autoencoder = network is trained to produce
output equal to the input

Vector input and output

Bottleneck in middle restricts dimension of
encoded data...

... In this example, to 1, but can be to
multiple dimensions

Performs a type of non-linear PCA

 Bottleneck layer expresses prior that data
can be summarized in only a few dimensions




Convolutional NN - Images

Prior - features in images are position invariant i.e. can
recognize at any position within an image

Also applies to audio/speech and text/time series data

Convolutional network is locally connected and shares
welights => expresses prior of position invariance

Far fewer parameters than FCN

Each neuron (i.e. feature map) in network derived by
applying filter to input data

Welg
Multi

nts of filter learned when fitting network

dle filters can be applied

Data Matrix

.
:
s -
i
fa
’
- :

)

.
e,
.

8
™,

e
™,

Teu
"

== =A==

.
e,
.
.
.

"
. .
......

" "

''''''
.........
''''''

-
0
.

. .

.....

olo|ll—mr|lo|lo]w/|id:
—

oclo|le|l~r|lal— |5

ololo|lo|lol&s

~

=
-
S
-y

nluldhl]lwl s

N | h|= 5o |
N|ldh|lvn|lolow |t | &

~rl~lalolw|lolw |~

| Al
olrn|lulalno]|lw|dI e

12{12| 12

12

wlollw|lslmn|lo |dh

slolsle]le]lwlo

Feature Map

0%1{ 0*1{ 071

00100100

0=40*%1) -1

1
'
—_

-

34



Recurrent NN — Temporal data

« Data with temporal structure implies that previous
observations should influence the current
observation

e Recurrent network maintains state of hidden
neurons over time

Past representation useful for current prediction
.e. network has a ‘memory’

« Several implementations of the recurrent concept
which control how network remembers and forgets
state

|

X

Folded

01

KR
) 000
1

X1

02

X2

Unfolded

03

X3

X = Input vector

§=hidden state (layers)
0=output

Arrows indlicate the direction
inwhich data flows,

35



Skip Connections

 Extraconnections between disconnected layers of the NN

>

NN then only needs to learn a “residual’:
H(x) ;= x + F(x)

=

%

":‘1—5!!-" .-.-u:;Q':‘E.-;#-"
o e
e
e
e
g - __.-'
e
-
-
r

s

7

 Widely used in computer vision but also useful on tabular data
 Makes networks easier to optimize

Veit, Wilber and Belongie (2016) show that resulting NN
functions as an ensemble (can delete layers)

Greff, Srivastava and Schmidhuber (2016) extend this view by
showing that layers learn refined estimates of input
representations
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* Allows for combination of simple models together with “neural
boosting”

Leads to the CANN proposal (Wuthrich and Merz 2019)

Input Layer € R'® Hidden Layer € B* Hidden Layer € B* Output Layer € R
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Transfer Learning

 Machine learning problem where model trained on source domain/task reused for target domain/task (Pan and
Yang 2009)

 Formal definition - Given source/target domain Dg/Dy and source/target task Dg/Dy, Improve a predictive
function in Dy using Dg/Tg¢ where D¢ + Dy or T¢ + Ty

 According to (Bengio 2012), DL ideal for transfer learning:
‘It focuses on learning representations and in particular ‘abstract’ representations, representations that ideally
disentangle the factors of variation present in the input.”

« Often useful when target domain does not contain enough data to train a full DL model => use pretrained model
as a feature extractor

Computer vision — pretrained classification model

Natural [angauge - pretrained language model

Model Is then fine-tuned to adapt it to target domain/task

See the fast.al Python library for excellent implementations of transfer learning algorithms
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Example: TL in the LC NN model

Model relies on disentangled representations

for (Country, Sex, Age, Time), implying that:
Can fine tune only the Country
representation for new data (i.e D¢ # D¢ but

TS — TT)

 Used data for Germany/Chile in 1999 to train a
new Country embedding i.e. no temporal
variation seen by model and projections made
for 2015/2008

 Results are impressive for adult mortality

-10.0-

Sex * Female 4 Male  Country * CHL * DEUTNP

Female Male

D

THO

dN_L1LMN3aa

100 0 10

Age

0
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Selected Applications

* Following examples chosen to showcase ability of deep learning to solve the issues with the traditional actuarial
(or ML) approaches.

* |n most of these instances, deep learning solution outperforms the traditional actuarial or machine learning
approach

« Complexity —which are the relevant features to extract/what is the correct model specification?

Multi-population mortality forecasting
Multli LoB IBNR reserving
Non-life pricing

 Expert knowledge —requires suitable prior knowledge, which can take decades to build

Analysis of telematics data

 Effort —designing relevant features is time consuming/tedious => limits scope and applicability

Lite valuation models
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Multi-population mortality forecasting

. Availability of multiple high quality series of Model Average MSE Median MSE Best Performance
mortality rates, but how to translate into better 1 LCSVD 5.50 2.48 19
forecasts? 2 ACF_SVD_region 3.46 2.50 36

3 ACF_SVD_country 7.30 4.77 Y

»  Multi-population models (Kleinow 2015; Li and 4 ACKF.BP 6.12 3.00 12
Lee 2005)

Many competing model specifications, Model Average MSE Median MSE Best Performance

without much theory to guide model

oot 1 LCSVD 5.50 2.48 33
CeieLton o 9 CAE_SVD 1.76 2.35 13
Relatively disappointing performance of two 2 CAE9 SVD 19 01 | 7q 14
models (CAE and ACF) 4 CAE2.BP 5.59 3.46 16

 Richman and Wiuthrich (2018) — deep neural net
with embedding layers Model Average MSE Median MSE Best Performance
1 LCSVD 5.50 2.48 7
 Qutperforms both single and multiple 9 T1.C ACF recion 3 46 2 50 10
pOpUIationS models 2 ACF BP 612 3 00 4
4 CAE_BP 5.50 3.46 4
5 DEEP 2.68 1.38 51




Multl LoB IBNR reserving (1)

 Even using triangles, most reserving exercises are more datarich than assumed by traditional (widely applied)
methods (CL/BF/CC):

Incurred/Paid/Outstanding

Amounts/Cost per Claim/Claim Counts
Multiple LoBs

Multiple Companies

« Traditional solutions:

Munich Chain Ladder (Quarg and Mack 2004) reconciles Incurred and Paid triangles (for single LoB) by
adding a correction term to the Chain Ladder formula based on regression

Credibility Chain Ladder (Gisler and Wthrich 2008) derives LDFs for sub-portfolios of a main LoB using
credibility theory

Double Chain Ladder (Miranda, Nielsen and Verrall 2013) relates incurred claim count triangles to payment
triangles

Would assume that multi-LoB methods have better predictive performance compared univariate methods, but no

study (yet) comparing predictive performance of multi-LoB methods (Meyers (2015) compares several univariate
reserving models)

 General statistical solution for leveraging multiple data sources not proposed
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Multl LoB IBNR reserving (2)

« Recent work embedding the ODP CL model into
a deep neural network (multi-LoB solution)

6 Paid triangles generated using the simulation
machine of Gabrielli and Withrich (2018)

<KNOW true reserves
Relatively small data (1271276=4/8 data
noints)

« Gabrielli, Richman and Wuthrich (2018) use
classical ODP model plus neural boosting on 6
triangles simultaneously

Dramatically reduced bias compared to ODP
model

Model learns smooth development factors
adjusting for accident year effects

« Gabrielli (2019) extends model to include both
paid and count data

Further reduction in bias versus the previous
model

LBl LoB2 LoB3 LoB4 LoB5 LoB6
true reserves R 30680 37037 16878 71630 72548 31117
CL reserves RC 38560 35,460 15602 67574 70,166 20,400
hCCNN reserves REB (LoBs individually) [ 30,233 35800 15815 70219 70936 30671
hCCNN reserves RY. (multiple LoBs) 40271 37027 16400 70563 73314 30,730
.
5 - - = —
N -
loBl lLoB2 LoB3 LoB4 LoB5 LoB6
(i) | true claims reserves R 30680 37037 16°87T8  T1'630 T2'h48 317117
(ii) | CL reserves RE,!_L 38560 35460 15692 67574 TO0'166 297400
(iii) | single NNDODP reserves Rm‘j 30°407 36'283 167123 TO'547  TI'8T3 317092
(iv) | multiple NNDODP reserves Rﬂﬁi“t 400403 37172 16'434 70727 73513 30°770
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Multi LoB IBNR reserving (3)

DeepTriangle model of Kuo (2018) takes
different approach; models claims paid and
outstanding for NAIC Schedule P data for 6
LoBs and multiple companies

For each accident year, development is seen as
a time series => model with Recurrent Neural
Network

Predictions of RNN combined with company
specific embedding layers to produce forecasts

Compares results to models in Meyers (2015)
and an AutoML model; DeepTriangle model
shows impressive performance on all lines

Lastly, granular reserving for claim
type/property damaged/region/age etc difficult
with normal chain-ladder approach as too much
data to derive LDFs judgementally; see solution
In Wiuthrich (2018).

Table and Diagram from Kuo (2018)

< Company CMEH Embed };

Repeat I — 1 times

Paid loss and case
< reserves history H R ‘ ?O_.]

CPO

—
FC

v 0000

Paid
Loss

SEHE =
| |
o O By _ Q Distributed across J — 1 time
sleps
Line of Business Mack ODP CIT  LIT ML DT
MAPE
Commercial Auto 0.060 0.217 0.052 0.052 0.068 0.043
Other Liability 0.134 0.223 0.165 0.152 0.142 0.109
Private Passenger Auto  0.038 0.039 0.038 0.040 0.036 0.025
Workers” Compensation 0.053 0.105 0.054 0.054 0.067 0.046
RMSPE
Commercial Auto 0.080 0.822 0.076 0.074 0.096 0.057
Other Liability 0.202 0477 0.220 0.209 0.181 0.150
Private Passenger Auto  0.061 0.063 0.057 0.060 0.059 0.039
Workers’ Compensation 0.079 0.368 0.080 0.080 0.099 0.067
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Non-life pricing (1)
 Non-life Pricing (tabular data fit with GLMs) seems like obvious application of ML/DL

* Noll, Salzmann and Wiuthrich (2018) is tutorial paper (with code) in which apply GLMs, regression trees, boosting
and (shallow) neural networks to French TPL dataset to model frequency

ML approaches outperform GLM
Boosted tree performs about as well as neural network...
....mainly because ML approaches capture some interactions automatically

In own analysis, found that surprisingly, off the shelf approaches do not perform particularly well on frequency
models.

These include XGBoost and ‘vanilla’ deep networks
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Non-life pricing (2)
\WWA-dimz

Deep neural network applied to raw
data (i.e. no feature engineering) did
not perform well

Embedding layers provide
significant gain in performance over
GLM and other NN architectures

Beats performance of best non-
deep model in Noll, Salzmann and
WUthrich (2018) (OOS Loss =
0.3141 using boosting)

Layers learn a (multi-dimensional)
schedule of relativities at each age
(shown after applying t-SNE)

Transfer learning — use the
embeddings learned on one
partition of the data, for another
unseen partition of data

Boosts performance of GLM

TR
AL
25 'A; A-4 "3k
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-50 | | | |
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Drivage

Model QutOfSample

GLM 0.3217
GLM Keras 0.3217
NN_shallow 0.3150
NN no FE 0.3258
NN_embed 0.3068
GLM_embed 0.3194
NN _learned _embed 0.2925
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Telematics data (1)

 Telematics produces high dimensional data (position, velocity, acceleration, road type, time of day) at high
freguencies — new type of data for actuarial science!

To develop “standard” models/approaches for incorporating into actuarial work might take many years => rely
on deep learning

« Mot immediately obvious how to incorporate into pricing - most approaches look to summarize telematics data
streams before analysis with deep learning

 From outside actuarial literature, feature matrices containing summary statistics of trips analysed using RNNs
plus embedding layers such as Dong, Li, Yao et al. (2016), Dong, Yuan, Yang et al. (2017) and Wijnands,
Thompson, Aschwanden et al. (2018)

 For pricing (within actuarial literature) series of papers by Wuthrich (2017), Gao and Wiuthrich (2017) and Gao,
Meng and Wiuthrich (2018) discuss analysis of velocity and acceleration information from telematics data feed

 Focus on v-a density heatmaps which capture velocity and acceleration profile of driver but these are also high
dimensional

 Wathrich (2017) and Gao and Wuthrich (2017) apply unsupervised learning methods (K-means, PCA and shallow
auto-encoders) to summarize v-a heat-maps - Stunning result = continuous features are highly predictive

Unsupervised learning applied to high dimensional data produces useful features for supervised learning
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Telematics data (2)

 Analysis using deep convolutional
autoencoder with 2 dimensions.

 Within these dimensions (left hand
plot):
Right to left = amount of density
in high speed bucket

Lower to higher = “discreteness’
of the density

 Another application is to identify
drivers for UBI at correct rate (and
use resulting features for pricing).
See Gao and Withrich (2019) who
apply CNNs to identify drivers
based on
velocity/acceleration/angle

/5% accuracy on 180s of data
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|ite Valuation Models (1)

« Major challenge in valuation of Life business with embedded options/guarantees or with-profits is run time of
(nested) stochastic models

* |n general, for Variable Annuity business, guarantees are priced and hedged using Monte Carlo simulations

 Under Solvency I, Life business with nested options/guarantees must be valued using nested Monte Carlo to
derive the Solvency Capital Requirements (SCR)

Outer loop - MC simulations to derive risk factors at t+1 under the real world measure
Inner loops - MC simulations to derive valuation given risk factors at t+1 under risk neutral measure

 Running full MC valuation is time consuming; common solutions are:
high performance computing
replicating portfolios
Least Squares Monte Carlo (LSMC), where regression fit to results of inner loop conditional on outer loop
‘lite” valuation models, see work by Gan and Lin (2015)
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|ite Valuation Models (2)

 Recent work using neural networks to enhance this
process

1.0

 Hejazi and Jackson (2016, 2017) provide novel approach !
based on matching prototype contracts |

 For VA valuation and hedging, Doyle and Groendyke
(2018) build a lite valuation model using a shallow neural
network that takes key market and contract data and
outputs contract value and hedging parameters.

Achieve highly accurate results versus full MC
approach.

Deviation from reference PDF

 For modelling with-profits contracts in SllI, Nigril,
Levantesi, Marino et al. (2019) replace inner loop basis
function regression of LSMC with SVM and a deep neural

— LSMC

network, and compare results with full nested MC.

Find that DL beats the basis function regression and
SVM, producing highly accurate evaluations of the
SCR. NAV

Diagram from Nigri, Levantesi, Marino et al. (2019 SO
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Stabllity of results

 The training of neural networks contains some
randomness due to:

Random initialization of parameters 25.

Dropout
Shuffling of data

« |Leads to validation and test set results that can exhibit
variability. Not a “new” problem; see Guo and Berkhahn

(2016). v
823
 Problem worse on small datasets (where other ML
techniques are stable) and autoencoders
« Example —validation and test set results of 6 DL models 22-

run 10 times on LC NN model applied to full HMD dataset.

« Solutions - Average models over several runs or at several
points in the training (see Gabrielli (2019))

 Results of network might not match portfolio average due
to early stopping. See Wiuthrich (2019) for analysis and
solutions,

24-

va loss

21-
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Interpretabllity

A common complaint is that neural networks are “black boxes” i.e. in some way, it is not possible to understand
how the network has derived its results from the input.

 Taken to an extreme, some views are that neural networks might not be suitable for the insurance industry.

 We should differentiate between explaining a phenomenon versus interpreting a model

-xplaining = causal understanding built via modelling; not necessarily achievable using models built for
orediction (since model parameters are biased)

nterpretability = understanding why a model makes a prediction.

 General purpose machine learning interpretability techniques such as LIME (Ribeiro, Singh and Guestrin 2016) and
ANCHOR (Ribeiro, Singh and Guestrin 2018) allow for the interpretation of neural networks

 To what extent are neural networks black boxes?

Can inspect learned representations at each stage of the model, leading to an understanding of what
representation/model has been specifiec

Many visualization techniques developed, especially for convolutional neural networks

 Can neural networks be designed for interpretability?
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Combined Actuarial Neural Net (CANN)

« Combine atraditional actuarial model together with a neural net

(Wathrich and Merz 2018). Implemented so far for pricing mgm acen2
(Schelldorfer and Withrich 2019) and reserving (Gabrielli 2019; e embeddine § % —
Gabrielli, Richman and Wuthrich 2018) &) —O S 3 9 .
. . . . O O > -
Traditional model (calibrated with MLE) directly connected % % E o mD
with output of network using skip connection S S S
Model output then enhanced by model structure learned by @ —O S S 3
neural net to explain residuals \ S e
Fasy to interpret (and fast to calibrate) © | b comection (ccODP)
« (Can usethe CANN model to highlight major differences from Output node
predictions of traditional model i.e. isolate the network output.
Can be used as model diagnostic (Schelldorfer and Wuthrich
2 L L
2019) . T
Shifts the interpretability problem Weights to optimize

MI(\

IEIEI{(
00t ( -

- See Breeden and Leonova (2019) who use a similar proposal to = = <

Incorporate prior economic information into a credit model /,,/ \
Age and Economic effects via skip connection; Cohort effects Fa) + H(D) 7 inputnodesto

. scoring networlk
via neural networks
Bottom diagram from Breeden and Leonova (2019) 54




Uncertainty bounds

* Ability to quantify extent of uncertainty in predictions is key to many actuarial tasks; however, focus of deep
learning literature is on best estimate

 Several approaches proposed.:

Use of dropout as an approximation of model uncertainty (Gal 2016; Kendall and Gal 2017/)
Quantile regression to derive prediction bounds (Smyl 2018)

Use neural networks for GAMLSS regression

 Not immediately obvious how to reconcile to traditional actuarial framework (often relies on bootstrapping)
Seemingly, framework of Kendall and Gal (2017/) for computer vision correlates with traditional actuarial
understanding (model and parameter risk = epistemic uncertainty; process risk = aleatoric uncertainty)

« Gabrielll, Richman and Wuthrich (2018) apply bootstrap to the multi-LoB ODP NN model —found that decreased
bias but increased RMSEP versus separate ODP models

e Moreresearch needed
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Conclusion

 Deep learning can enhance the predictive power of models built by actuaries

« Emphasis on predictive performance and potential gains of moving from traditional actuarial and statistical
methods to machine and deep learning approaches.

« Measurement framework utilized within machine learning — focus on testing predictive performance => focus on
measurable improvements in predictive performance led to refinements and enhancements of deep learning
architectures

 Learned representations from deep neural networks often have readily interpretable meaning

* Very useful for high-frequency and high-dimensional data

* Application of deep learning techniques to actuarial problems is rapidly emerging field within actuarial science =>
appears reasonable to predict more advances in the near-term.

 Deep learning is not a panacea for all modelling issues - applied to the wrong domain, deep learning will not
produce better or more useful results than other techniques.
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Appendix - Other Techniques

 Dropout (Srivastava, Hinton, Krizhevsky et al. 2014)

used to regularize NNs, can be combined with L1 or L2 regularizers
 Batchnorm (loffe and Szegedy 2015)

technique used to make NNs easier to optimize and also provides a regularization effect
« Attention (Bahdanau, Cho and Bengio 2014)

allows networks to choose most relevant parts of a representation
 Generative Adversarial Models (GANs) (Goodfellow, Pouget-Abadie, Mirza et al. 2014)

Game between two NNs, whereby a generator network produces output that tries to trick a discriminator
network.

Useful for generative modelling, but other interesting applications such as BIGAN (Donahue, KrahenbUhl and
Darrell 2016)
Variational autoencoders (VAEs) (Kingma and Welling 2013)

Autoencoder with distributional assumptions made on codes Neural
 Network Architecture Search (NNAS)

Techniques used to design NNs automatically
* Pruning
New technique that takes a trained NN and tries to reduce redundancy (number of layers/parameters) while
maintaining performance
Part of Tensorflow 2 AP
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